Analysis of $B^0 \rightarrow \rho^0 \rho^0$ Decays, CP Violation and Implications for the CKM Matrix

Ilya Osipenkov

- LBNL/UC Berkeley
- For the BaBar Collaboration

Outline

Theory

■ EW Interactions \rightarrow CKM Matrix \rightarrow CP Violation \rightarrow B mesons \rightarrow $\rho\rho$ system \rightarrow $\rho^0\rho^0$

❖ The BaBar Experiment

- Detector Components & Relevance
- SVT Calibration

Analysis

- Event Selection & PDF construction.
- Validation & Systematics.
- Results & Implications for the CKM Matrix.

Setting The Context

Standard Model

- ➤ The Electro-Weak symmetry is broken via the Higgs mechanism.
- > Quarks acquire masses and the generations (weakly) interact.
- > Charged Current Interaction: $-\sqrt{\frac{1}{2}}g\overline{u_{Li}}\gamma^{\mu}\overline{V}_{ij}d_{Lj}W_{\mu}^{+} + \text{h.c.}$

➤ V (i,j=1,2,3) is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

CKM Matrix

* Describes the mixing between three generations of quarks.

$$\mathbf{V_{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \mathbf{:} \qquad |\mathbf{V_{CKM}}| \simeq \begin{pmatrix} 0.975 & 0.221 & 0.003 \\ -0.221 & 0.975 & 0.040 \\ 0.009 & 0.039 & 0.999 \end{pmatrix}$$

❖ Parameterized by 3 mixing angles and a phase.

Wolfenstein parameterization

$$\begin{bmatrix} 1-\lambda^2 & \lambda & A \lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A \lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A \lambda^2 & 1 \end{bmatrix}$$

The CP Symmetry is violated for a nonzero phase (\eta/\rho \approx 2.5).

CP Violation

➤ Unitarity of CKM matrix implies:

a)
$$K: V_{id}V_{is}^* = V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$$

b)
$$B_s: V_{is}V_{ib}^* = V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

c)
$$B_d: V_{id}V_{ib}^* = V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 $\triangleright \alpha = -arg[V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$

(b)

- > Triangle Area Corresponds to the amount of CP violation (same for K, B_s, B_d).
- > 'Openness' of (c) points to the presence of large CP asymmetries.

B Meson Decays

- ❖ Provide information about the angles and sides of the unitarity triangle.
 - We study the B^0 $\overline{B}{}^0$ oscillations:

❖ The interference between a direct decay and such oscillation enables us to measure the size of the CP violation.

Mass Mixing & Time Dependence

The mass-eigenstates are:

$$|B_L> = p|B^0> + q|\overline{B}^0>, |B_H> = p|B^0> - q|\overline{B}^0>$$

- $> |p| \sim |q|$
- The rate for producing the CP final state is:

$$R(\Delta t) \propto e^{-\Gamma(\Delta t)} \left\{ 1 \pm C_{CP} \cos[\Delta m_B \Delta t) \right] \mp S_{CP} \sin[\Delta m_B \Delta t) \right\}$$

where $\Delta m_B = m_H - m_L$, S_{CP} & C_{CP} are functions of $A_f \equiv \langle f|H|B^0 \rangle$, $\bar{A}_f \equiv \langle f|H|\bar{B}^0 \rangle$

φρ Case:

- > Vector-vector state, which can decay via S, P or D waves.
- \triangleright Our final state (f) is the $\rho^0 \rho^0$ Longitudinal state.
- \triangleright S_{CP}, C_{CP} are determined via the TD analysis.

Physics of CP Coefficients

* We measure the asymmetry

$$a_{f_{CP}}(t) \equiv \frac{\Gamma(B^{0}(t) \to f_{CP}) - \Gamma(\overline{B}^{0}(t) \to f_{CP})}{\Gamma(B^{0}(t) \to f_{CP}) + \Gamma(\overline{B}^{0}(t) \to f_{CP})} = C_{CP}\cos(\Delta m_{B}t) - S_{CP}\sin(\Delta m_{B}t)$$

$$S_{CP} = \frac{2Im(\lambda_{f_{CP}})}{1 + |\lambda_{f_{CP}}|^2} \qquad \lambda_{f_{CP}} \equiv \frac{q\bar{A}_{f_{CP}}}{pA_{f_{CP}}} = \eta_{f_{CP}} \frac{q\bar{A}_{\bar{f}_{CP}}}{pA_{f_{CP}}}$$

- \triangleright S_{CP} corresponds to CP violation due to mixing.
- \gt S_{CP} =sin(2 α) when Penguin Loop corrections are neglected.

$$C_{CP} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$

- \triangleright C_{CP} corresponds to direct CP violation (with final states having different phases).
- $ightharpoonup C_{CP} = 0$ at tree level.
- **❖ Non Standard Model physics can affect either type of CP violation**

Measuring a

Several possible processes.

- * Measure $\alpha=180^{\circ}$ -β- γ via weak phases.
- \triangleright Original attempt: measure S_{CP} in $B \rightarrow \pi^+\pi^-$.
- \triangleright Large loop corrections require knowledge of CP parameters in $B \rightarrow \pi^+ \pi^0$, $B \rightarrow \pi^0 \pi^0$ as well.
- \triangleright Not possible to obtain time (vertex) information for $B \rightarrow \pi^0 \pi^0$.
 - **\Leftrightarrow** B \rightarrow $\rho\rho$ we can perform the full Isospin Analysis.

ρρ System & Isospin

- The three decays $B \rightarrow \rho^0 \rho^0$, $B \rightarrow \rho^+ \rho^0$, $B \rightarrow \rho^+ \rho^-$ only have two (longitudinal) final states (I=0,2).
- ➤ The (strong & weak) phases can be related to each other & Unitarity Angles.
- ➤ We represent relations between the amplitudes as triangles in the Complex Plane.

$$\begin{split} A^{+-} &= A(B^0 \to \rho^+ \rho^-) \\ \tilde{A}^{+-} &= A(\overline{B}^0 \to \rho^+ \rho^-) \\ A^{00} &= A(B^0 \to \rho^0 \rho^0) \\ \tilde{A}^{00} &= A(\overline{B}^0 \to \rho^0 \rho^0) \\ A^{+0} &= A(B^+ \to \rho^+ \rho^0) \\ \tilde{A}^{-0} &= A(B^- \to \rho^- \rho^0) \end{split}$$

> We retain the four-fold ambiguity with respect to orientation of the triangles.

$$\rho^+\rho^-$$

- ➤ The Tree Diagram *is not* color suppressed (BR=23.5x10⁻⁶).
- ➤ The Leading Penguin is suppressed.
- \triangleright The process can be used to evaluate $\alpha_{\rm eff}$.
- $ightharpoonup S_{CP} = (\sqrt{1 C_{CP}^2})\sin(2\alpha 2\Delta\alpha) \text{ or } S_{CP} \equiv (\sqrt{1 C_{CP}^2})\sin(2\alpha_{eff}).$

$\rho^0 \rho^0$

- \bullet Unlike $\pi^0\pi^0$ we can fully reconstruct the decay vertices.
- The Tree Diagram *is* color suppressed.
- \triangleright The Penguin Loop corrections make a significant contribution (~20%).
- ➤ The Electro-Weak Penguins generate final states with different hadronic and CKM phases.
- \triangleright We place limits on Penguin Contributions $\Delta\alpha$.

Determining α

 \star Construct a $\chi^2(\alpha)$.

$$\chi^{2} = \chi^{2}(\alpha, S^{+-}, S^{00}, C^{+-}, C^{00}, B_{Tot}^{+-}, B_{Tot}^{+0}, B_{Tot}^{00}, f_{L}^{+-}, f_{L}^{+0}, f_{L}^{00}, \tilde{S}^{+-}, \sigma^{2}(\tilde{S}^{+-}), \tilde{S}^{00}, \sigma^{2}(\tilde{S}^{00}), ...)$$

$$= \chi^{2}(\alpha, A_{0}, A_{2}, \bar{A}_{0}, \bar{A}_{2}, \tilde{S}^{+-}, \sigma^{2}(\tilde{S}^{+-}), \tilde{S}^{00}, \sigma^{2}(\tilde{S}^{00}), ...)$$

- > The measured quantities are denoted by \sim .
- ➤ All 10 parameters are expressed in terms of the four amplitudes $(A_0, A_2, \overline{A}_0, \overline{A}_2).$

***** We minimize $\chi^2(\alpha)$, while scanning over α .

Objectives

- ***** Examine The Electro-Weak interactions in the Standard Model, specifically focusing on CP properties of B decays.
- ***** Measure the BR and CP coefficients in $B \rightarrow \rho^0 \rho^0$ decays.
 - **\Leftrightarrow** Use the above to place a limit on $\Delta\alpha$.

BaBar Experiment

PEP-II & BaBar

❖ PEP-II is an asymmetric B-factory

 $\bullet e^{-}(9 \text{GeV})e^{+}(3.1 \text{GeV}) \rightarrow Y(4 \text{S}) \rightarrow B\overline{B}$

The Detector

The Decay

Subsystems

- > Reconstruct the decay vertices.
- Reconstruct the exclusive final state.
- \triangleright Determine the flavor of the conjugate ${\bf B^0}$.

❖ Silicon Vertex Tracker (SVT)

➤ Energy loss on the silicon strips, enabling precise vertex reconstruction & charged Particle ID (PID).

❖ The Drift Chamber (DCH)

➤ Ionization of the helium based gas allowing for precise momentum measurements & PID.

❖ Detector of Internally Reflected Cherenkov Radiation (DIRC)

> Track velocity based on the Cherenkov Angle, primarily distinguishing Pions & Kaons.

Electromagnetic Calorimeter (EMC)

 \triangleright Energy & position of e⁻, γ , π^0 by absorbing their energy.

❖ Instrumented Flux Return (IFR)

> Presence of muons and neutral hadrons, which were able to penetrate other subdetectors.

SVT

- ➤ Five concentric cylindrical layers of double-sided silicon detectors.
- \triangleright Reconstructs the decay vertices of the two B⁰-mesons (essential for measurement of CP asymmetries).
- **➤** Measures Specific Ionization per hit.
- ➤ Momentum information (by inverting the Bethe-Bloch curve).

Energy Loss

➤ For the moderately relativistic (charged) particles most of the energy loss occurs via ionization and atomic excitation.

! Described by the Bethe-Bloch equation: $-dE/dx\sim(C*Ln(\beta\gamma)-\beta^2-\delta)/\beta^2$

SVT Calibration & Tracking

- \triangleright The actual energy loss is dependent upon *time*, θ , ϕ and the particle momentum.
- $ightharpoonup dE/dx = dE/dx [log(\beta\gamma), C(\theta, \phi, log(\beta\gamma)), C_0(\theta), C_1(\theta), C_2(\theta), C_3(\theta), C_4(\theta)]$ the calibration constants C, C_0, C_1, \ldots were determined by A. Telnov.
- ➤ The (approximate) inverse can be used to provide momentum information.
- > I have integrated these into the BaBar software.
- > In the low momentum region particles lose a significant portion of their momentum with each interaction.
- > Thus energy loss significantly varies between hits, making the (track based) truncated mean approach insufficient.

Hit By Hit Model

\clubsuit Work in progress with the ultimate goal of improving track reconstruction, resolution and efficiency (particularly for low energy π 's).

- \checkmark Examining the individual energy loss (both Φ & Z views) and accounting for dominant geometric effects.
- ✓ Producing sufficiently pure particle samples and using them to analyze energy loss within particular momentum ranges.
- \triangleright Modeling the dependence of energy loss for each relevant variable $(\theta, \phi, \text{ layer}, \text{ etc.})$.
- > Combining the measurements to produce a hit dependent equivalent to the Bethe-Bloch.

Analysis

Analysis Outline

- Controlling Backgrounds I: Parameters & Cuts
- Controlling Backgrounds II: PDF Fits
- Time Dependence
- Fit Yields & Validations
- Systematics
- * Results & Implications

Parameters

- **Goal: Optimize the signal, while minimizing the backgrounds.**
- > Select the desired ranges for:
- \triangleright B⁰ mass, reconstructed from beam energy (5.245<m_{ES}<5.29 GeV/c²).
- > The Difference between reconstructed B-energy and beam value ($|\Delta E| < 0.085$ GeV).
- \triangleright Reconstructed masses of the ρ^0 mesons (0.55< m_1m_2 <1.05 GeV/ c^2).
- \triangleright Helicities (aka decay angles) of the ρ^0 mesons ($|\cos\theta_1|$, $|\cos\theta_2|$ <0.98).
- \triangleright Time between the decay of the two B's ($|\Delta t|$ <15ps) and its error (0.1< $\Delta t_{\rm Error}$ <2.5).
- Tagging Categories for the other B (six possibilities).
- ➤ Discriminant constructed to distinguish signal from continuum background (|*E*-shape|<2 or |L-shape|<5).

Discriminants I

- \diamond Distinguish 'jetty' background events from the 'symmetric' $B\overline{B}$ events.
 - **❖Neural Net Multivariate (eShape) vs. Likelihood Based (LikeShape).**

Variables:

- \triangleright Monomials L_0^{charged} , L_0^{neutral} , L_2^{charged} , L_2^{neutral} .
- \triangleright vertex χ^2 probability.
- $\triangleright \cos\theta_{\rm BT}$ (angle between B thrust and ROE thrust).
- $\triangleright \cos\theta_{\text{ThBa}}$ (polar angle of B thrust in CMS).
- $\triangleright \cos\theta_{\rm R}$ (polar angle of B momentum in CMS)

Discriminants II

❖ Neural Net Multivariate Discriminant.

- > Used in the Standard Fitter.
- > Gives the greatest possible discriminating ability.

❖ Alternative: Likelihood Based Discriminant.

- ➤ One of the first analyses in BaBar to use the technique.
- ➤ Not a 'black box'.
- ➤ Simpler PDF parameterizations for most modes.

Discriminants III

Perform Each Fit & Compare the Errors.

LikeShape

Quantity	Mean Stat Error	Systematic Error	Total Error
nFullSig	25.71 +/- 0.18	0.688	25.72
S	1.04 +/- 0.03	0.006	1.04
С	0.82 +/- 0.03	0.044	0.82

eShape

Quantity	Mean Stat Error	Systematic Error	Total Error
nFullSig	25.81 +/- 0.19	3.266	26.02
S	1.01 +/- 0.03	0.022	1.01
С	0.83 +/- 0.03	0.047	0.83

- ➤ LikeShape reduces the Systematic Error by 4.7-times or 2.6 evts.
- ➤ Statistical Error Dominates & the collaboration chose to keep eShape as the default.

D-Veto

- ❖ Goal: remove the D backgrounds, which have a signal-like peak.
- ➤ Vetoed by placing restrictions on reconstructed D-masses.

$$|m_{K\pi\pi} - m_{D+}| > 13.6~MeV$$
 or $|m_{K\pi\pi} - m_{D+}| > 40.0~MeV$ and $|m_{\pi\pi\pi} - m_{D+}| > 13.6~MeV$

• Implemented an improved algorithm for selecting the 'fast' π .

Control Sample Studies

❖ Goal: Account for discrepancies between Data & MC

- ► Use B⁰→D⁻ π^+ →(K⁺ $\pi^ \pi^-$) π^+ control sample to calibrate ΔE, m_{ES} and eShape parameters.
- Make the necessary modifications to the parameters.
- ➤ Obtain the errors to be used in Error Analysis of the PDF shape uncertainty.

Candidate Selection

- \bullet We have multiple candidates for the same event (~5%).
- ❖ Goal: Determine which approach yields the smallest combination of statistical and systematic error.
- (1) Random: Signal Efficiency ϵ_{Sig} =0.87.
- (2) Based on best χ^2 vertex: ϵ_{Sig} =0.92.
- (3) Based on best $\chi^2 \Delta E$, m_1 , m_2 (with or without vertex info): $\epsilon_{Sig} = 0.97$

Use (2) since (3) introduces large correlations between the signal & backgrounds.

Component PDFs

- ❖ In addition to $B^0 \rightarrow \rho^0 \rho^0$ (~100evts.) there are a number of problematic backgrounds in the signal region.
- \triangleright Fit in m_{ES}, \triangle E, eShape, m($\pi\pi$)_{1,2}, cos θ _{1,2}, tagging category, \triangle t.

➤ Combine & Construct a ML Fit.

$$L = \exp\left(-\sum_{i} n_{i}\right) \prod_{j=1}^{N} \left(\sum_{i} n_{i} f_{i}(\vec{x}_{j}; \vec{\theta})\right) \rightarrow \max$$
yield term PDF term

- n_i : yield of each event type (fixed or free
- f_i : PDF for each event type x_i : variables for each event
- $\vec{\theta}$: PDF parameters (fixed or free)

> A major portion of the analysis is to Isolate, Fit & Examine these PDFs.

Backgrounds I

PDFs resemble the signal

- ❖ Non Resonant Modes: $B^0 \rightarrow \rho^0 \pi^+ \pi^-$, $B^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$. (~0 evts.).
 - > Particularly problematic to extract.
- ❖ Secondary Signal Modes: $B^0 \rightarrow \rho^0 f_0(980)$ and $B^0 \rightarrow f_0 f_0$ (~10evts.).
- **♦** B^0 → $a_1^+ \pi^-$ → $\pi^+ \pi^- \pi^+ \pi^-$ (~250 evts.).
 - \triangleright Signal-like in m_{ES} and ΔE .
 - > Interferes with the signal modes & is the main source of systematic error.
- ❖ Signal-Like Charmless Modes: $B^0 \rightarrow \rho^0 K^{*0}$, $B^0 \rightarrow f_0 K^{*0}$ (~100 evts.).
 - > Fit PDFs Individually.
 - Control Overall Yields.

Backgrounds II

A Large event count in the Signal Region

- ❖ Self Cross Feed-Like Charmless Cocktail: $B \rightarrow \rho^0 \rho^+$, $\rho^+ \rho^-$, $\rho^+ \pi^-$, $\rho^- \pi^+$, $\rho^0 \pi^+$, η 'K, $a_1^{-+} f_0$, $a_1^{-0} \pi^+$ (~500 evts.).
 - \triangleright One (or more) mismatched π .
 - Fit simultaneously & study the impact of changing component yields.
 - ➤ Several ways to combine Signal-Like & SXF-Like Charmless.
- ❖ Remaining BB decays (~2000 evts.).
- **❖** Continuum background (~70000 evts.).
 - > Separate Using the NN Discriminant (eShape).
 - Fit to the sideband & allow (some) parameters to float in the Data fit.

* Mass, eShape and helicity distributions for $B^0 \rightarrow \rho^0 \rho^0$ and Continuum PDFs.

Time Dependence

 \bigstar Δt is fitted with a **CP Model PDF** convoluted with a resolution function.

$$F_{Q_{tag}}^{\rho^{0}\rho^{0}}(\Delta t) \sim \frac{e^{-|\Delta t|/\tau}}{4\tau} \times \begin{cases} 1 - Q_{tag}\Delta w + Q_{tag}\mu(1 - 2\omega) \\ + (Q_{tag}(1 - 2w) + \mu(1 - Q_{tag}\Delta\omega)) \left[S\sin(\Delta m_{d}\Delta t) - C\cos(\Delta m_{d}\Delta t)\right] \end{cases}$$

$$\mathcal{R}_{sig}(\Delta t, \sigma_{\Delta t}) = f_{core}G(\Delta t, \mu_{core}\sigma_{\Delta t}, \sigma_{core}\sigma_{\Delta t})$$

$$+ f_{tail}G(\Delta t, \mu_{tail}\sigma_{\Delta t}, \sigma_{tail}\sigma_{\Delta t}) + f_{out}G(\Delta t, \mu_{out}, \sigma_{tail})$$

 $ightharpoonup Q_{tag} = \pm 1$ for B^0, \overline{B}^0 ; ω , $\Delta \omega$ are the mistag fraction and error for each Tagging Category; $G(\mu, \mu_0, \sigma)$ is a Gaussian with the bias μ_0 and standard deviation σ .

Raw ML Fit

❖ The Maximum Likelihood fit is performed in multiple stages:

- ➤ CP-Symmetric Fit with Continuum mass-helicity & eShape parameters floated.
- ightharpoonup CP-Symmetric Fit with Δt parameters floated.
- ➤ Full (CP dependent) fit:

Parameter	Value	+Error -Error		
C	0.20	0.82	0.70	
S	0.26	0.67	0.73	
polarization f_L	0.71	0.13	0.15	
4π Yield	3.7	29.7	25.3	
BBbar Yield	2356	151	150	
Bkg Yield	68691	284	283	
Chls Yield	669	89	87	
a ₁ π Yield	248	52	49	
$ ho^{\!\scriptscriptstyle 0} ho^{\!\scriptscriptstyle 0}$ Yield	107.0	35.3	34.3	
$ ho^{\!o}\!f_{\scriptscriptstyle 0}$ Yield	10.2	21.7	20.1	
$f_{\theta}f_{\theta}$ Yield	4.4	7.8	4.9	
$ ho^0\pi\pi$ Yield	-23.5	39.3	35.2	

Validation I: Toys

- ❖ Construct 100 Toy Datasets for Embedded MC (with Chls., BB & Continuum generated from PDFs).
- ➤ Apply to various sets of initial parameters.

Typical Configuration

	JI	8		
Parameter	Given	Fitted	RMS	
$ ho^0 ho^0$ Long	56	59.9	30.6	
$ ho^0 ho^0$ Tran	29	29.7	19.1	
$ ho^0\pi\pi$	0	-10.8	48.4	
4π	0	-4.1	36.4	
$ ho^0\!f_0$	6	12.8	25.4	
$f_{\theta}f_{\theta}$	6	3.8	8.9	
S	-0.4	-0.43	0.98	
C	0.0	0.06	0.86	
S Pull	0.0	-0.02	0.98	
C Pull	0.0	0.14	1.14	

Validation II: Fit Bias

- ➤ Vary Longitudinal and Transverse Yields about their expected value.
- \triangleright The bias is 6.2±1.3 for the Longitudinal and 1.7±0.7 for the Transverse yield.

- ➤ Similarly, vary S & C.
- \triangleright The bias is 0.03 ± 0.06 for S and 0.01 ± 0.03 for C.

Validation III: Direct Projections

> Generate toy MC (red) using parameters returned by the fit.

> Overlay with the Data (blue).

Validation IV: Likelihood Ratios

\Likelihood Ratio: $\mathcal{L}_{sig}/\mathcal{L}_{Tot}$

❖ The PDF fit (blue) is a good match to the Data (black) with χ^2/ndf =1.20.

Validation V: Projection Plots

❖ We place a likelihood cut to enhance the signal/background ratio and project the multidimensional fit onto its parameters.

• Projection plots onto ΔE , eShape, helicity, m_{ES} , Δt and $m_{\pi\pi}$. $B^0 \rightarrow \rho^0 \rho^0$ signal is in red, background in blue and the sum in black.

Systematics I:

- Scale factors (don't affect significance)
 - > Tracking efficiency (0.5%/track)
 - > PID efficiency (0.5%/track, evaluated with $D\pi$ control sample)
 - \triangleright Vertex χ^2 cut (<1%)
 - > Other selection cuts (<1%)
 - ➤ B Counting (1%)
 - ▶ Interference with $a_1\pi$ final state (~14evts).
 - Studied with toyMC
- Other systematic effects (which affect significance)
 - \rightarrow Fit bias (~2 evts).
 - Mainly due to correlations
 - PDF Shapes (~5evts).
 - Studied by varying PDF parameters.

Systematics II:

Source	$B^0 \rightarrow \rho^0 \rho^0$	$B^0 \rightarrow \rho^0 f_0$	$B^0 \rightarrow f_0 f_0$	$B^0 \rightarrow \rho^0 \pi^+ \pi$	B ⁰ →4π	f _L		
Multiplicative (i.e. →0 as Signal→0)								
Number of B mesons	1.1%	1.1%	1.1%	1.1%	1.1%	-		
Track multiplicity cut	1.0%	1.0%	1.0%	1.0%	1.0%	-		
Thrust angle cut	1.0%	1.0%	1.0%	1.0%	1.0%	-		
Vertex requirement	2.0%	2.0%	2.0%	2.0%	2.0%	-		
PID cut	2.0%	2.0%	2.0%	2.0%	2.0%	-		
Track finding	2.0%	2.0%	2.0%	2.0%	2.0%	-		
MC statistics	<1%	<1.%	<1%	<1%	<1%	< 0.01		
Interference	14evts	10evts	6evts	15evts	6evts	0.051		
Additive (i.e. unchanged as Signal→0)								
PDF variation	4.6evts	4evts	3evts	7evts	7evts	0.030		
Charmless BR	2.2	2.9	0.3	0.2	1.9	0.010		
Fit bias	2.0	2.5	0.9	4.8	3.6	0.009		
Total	(16evts)	12evts	7evts	18evts	11evts	0.048		

! Interference (primarily with $a_1\pi$) & PDF shape variation are the main sources of error.

Results I:

Non-Resonant Modes

- **❖** We obtain the upper limits of 8.8x10⁻⁶ for $B^0 \rightarrow \rho^0 \pi^+ \pi$ and 23.1x10⁻⁶ for $B^0 \rightarrow \pi^+ \pi^- \pi^+ \pi$ at 90% CL.
 - The mass range is the same as all other modes $(0.55 < m_{\pi\pi} < 1.05)$.
 - Belle Limits: $BR_{\rho\pi\pi} < 11.9 \times 10^{-6}$, $BR_{4\pi} < 19.0 \times 10^{-6}$ (with 0.55 < $m_{\pi\pi} < 1.70$).

Results II:

Signal Modes

$$N_{\rho \theta \rho \theta} = 99.1^{+35}_{-34} (stat.) \pm 16 (syst.)$$

- \triangleright The significance (including systematics) is 3.1 σ
- $ightharpoonup f_L = 0.75^{+0.11}_{-0.14}(stat.) \pm 0.05(syst.)$
- $ightharpoonup N_{\rho 0 f_0} = 3^{+22}_{-20}(stat.) \pm 12(syst.), N_{f_0 f_0} = 7^{+8}_{-5}(stat.) \pm 7(syst.).$
- $ightharpoonup N_{\rho\theta\pi^{+}\pi^{-}} = -13^{+39}_{-35}(stat.) \pm 18(syst.), N_{4\pi} = 8^{+30}_{-25}(stat.) \pm 11(syst.).$

$$BR_{\rho \theta \rho \theta} = [0.92^{+0.33}_{-0.32}(stat.) \pm 0.14(syst.)] \times 10^{-6}$$

 $ightharpoonup BR_{\rho 0 f_0} < 0.40 \times 10^{-6}, BR_{f 0 f_0} < 0.19 \times 10^{-6} \text{ at } 90\% \text{ CL}.$

Results III:

CP Parameters

$$S_L^{00} = 0.3 \pm 0.7 \text{(stat.)} \pm 0.2 \text{(syst.)}$$

$$C_L^{00} = 0.2 \pm 0.8 \text{(stat.)} \pm 0.3 \text{(syst.)}$$

 \triangleright Correlation = 0.035.

$$\mathcal{A}_{CP}(\Delta t) = -C_L^{00} \cos \Delta m \Delta t + S_L^{00} \sin \Delta m \Delta t$$

$\chi 2(\alpha)$ Scan

 \bullet Perform the Isospin Analysis & Scan over α .

 $\triangle |\Delta \alpha| < 15.7^{\circ} (17.6^{\circ})$ at $1\sigma (90\%)$ CL, $\alpha = (82.6^{+32.6}_{-6.3})^{\circ}$ at 1σ .

Implications for α :

CKM & UT Fits

\Leftrightarrow Combine the $B \to \rho \rho$ results with other measurements (primarily $B \to \rho \pi$, $B \to \pi \pi$).

> CKM Fit: $\alpha = (81.1^{+17.5}_{-4.9})^{0}$ @ 1σ .

Updated Results

* arXiv:0901.3522: BR($\rho^+\rho^0$)=[23.7±2.0]x10⁻⁶ (piror: [16.8±3.2]x10⁻⁶)

* -1.8° $< \Delta \alpha < 6.7^{\circ}$, $\alpha = (92.4^{+6.0}_{-6.5})^{\circ}$ at 1σ .

Implications for the CKM Matrix

***** Further restrict the CKM parameters ρ & η .

Implications for the LHC

❖ B-factory searches restrict new physics effects to be <10%.

❖ Masses ~300GeV-1TeV for the same couplings.

Most likely to restrict the couplings when the masspeaks are seen.

Conclusions

- **\Limits** Evidence for $B^{\theta} \rightarrow \rho^{\theta} \rho^{\theta}$ signal:
 - $ightharpoonup BR = (0.92 \pm 0.33 \pm 0.14) \times 10^{-6}$ at 3.1 σ significance.
 - $F_L = 0.75 \pm 0.14 \pm 0.05$.
- * No significant evidence for $B^{\theta} \rightarrow f_{\theta} \rho^{\theta}$, $B^{\theta} \rightarrow f_{\theta} f_{\theta}$, $B^{\theta} \rightarrow \rho^{\theta} \pi^{+} \pi^{-}$, $B^{\theta} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ decays.
- **CP Parameters:**
 - $> S_L = 0.3 \pm 0.7 \pm 0.2$
 - $> C_L = 0.2 \pm 0.8 \pm 0.2$
- **Performed Full Isospin Analysis & obtained limits** for Penguin Contributions to α:
 - $\triangleright |\Delta\alpha| < 15.7^{\circ}$ at the 1σ level.

Backup

